
Algorithm Agility
 ̶ Discussion on TPM 2.0 ECC Functionalities

Liqun Chen (University of Surrey)
Rainer Urian (Infineon Technologies)

SSR 2016
December 5 – 6, 2016

Trusted Platform Modules (TPMs)

2

– TPM specifications were developed by the Trusted Computing Group

– TPMs are used as a cryptographic engine in various computers

– Over a billion TPMs have been shipped

– A number of major applications, e.g. Microsoft BitLocker, FIDO and
Secure Boot

– ISO/IEC 11889

– Two versions of TPMs:
– TPM v1.2, supporting limited algorithms

– TPM v2.0, supporting algorithm agility

Why is algorithm agility
necessary?

Cryptographic algorithms in TPM 1.2

4

TPM 1.2 only supports a few cryptographic algorithms

– One hash algorithm –
SHA1 (also used for HMAC)

– One asymmetric algorithm –
RSA (for encryption and signature)

– One specially designed privacy-preserving signature algorithm –
DAA (direct anonymous attestation)

– AES (not included in the early versions) and
one-time-pad with XOR

Necessary Changes to TPM 1.2

5

The following are views on 2005 ……

– SHA1: signs of weakness and it is being deprecated
– NIST and ISO’s action to respond

– Different geographies want different algorithms to be available
– Nobody trusts anybody else’s algorithms

– Support the shift from RSA to ECC for asymmetric cryptography

– World’s infrastructures still use a lot of RSA
– It was expected that change was happening

TCG’s Reaction: Algorithm Agility in TPM 2.0

6

Each primitive can be implemented with different algorithms

– Mandatory algorithms:
– RSA encryption and signature
– ECC encryption and signature
– ECC-DAA (RSA-DAA is no longer supported)
– SHA-1 (not for signatures), SHA-256 and HMAC
– AES and one-time-pad with XOR

– TCG Algorithm Registry

– Manufacturer can add any algorithms, e.g.,
– China: SM2, SM3, SM4
– Banks: Triple DES

How to achieve algorithm agility?

A naïve solution

8

– Each algorithm is implemented individually with specific commands

Any problem with this solution?

– Inflexible: many TPM versions are not compatible to each other

– Bad manageability: the specification can be too complex

– Bad performance: TPMs need to figure out which algorithm to perform

– Too expensive: it is not affordable

The TCG solution

9

– Each primitive is implemented with multiple choices of algorithms
– Multiple algorithms share the same set of TPM commands

Example: TPM2_Sign()
– RSA signature
– ECDSA
– EC-Schnorr
– SM2
– ECDAA

– CL-ECDAA
– q-SDH-ECDAA

– …...

What does this paper introduce?

Overview of TPM 2.0 Functionalities

11

TPM commands for key handling:–
– TPM2_Create()

– TPM2_Load()

TPM commands for cryptographic algorithms:–
– TPM2_Commit()

– TPM2_Sign()

– TPM2_ECDH_KeyGen()

– TPM2_ECDH_ZGen()

Overview of TPM 2.0 Key Structures

12

TPM key structure: keys are stored in a hey hierarchy

– key.name – external identity

– key.handle – internal identity

– key.blob – (tsk)ek||tpk||macmk((tsk)ek||tpk.name); (ek, mk) = kdf(parentK)

Storage Root Key

Master
Platform

Key
Master
System
Key

Master
User
Key

Migratable Key Non-migratable Key

Master
Volatile

Key

Platform Key Volatile Key(s) System Key(s) User Key(s)

Patent
key

Patent
key

Patent
key

Patent
key

User key User keys User keys User keys

Known ECC Cryptographic Use Cases for the TPM 2.0

13

– Conventional digital signatures

– Direct Anonymous Attestation (DAA)

– DAA with attributes (DAA-A)

– U-Prove

– Key exchange

New ECC Use Cases for the TPM 2.0

14

Asymmetric encryption

(Key Encapsulation Mechanism – KEM)

Four algorithms specified in ISO/IEC 18033-2:

– ECIES (Elliptic Curve Integrated Encryption Scheme)

– PSEC (Provably Secure Elliptic Curve encryption)

– ACE (Advanced Cryptographic Engine)

– FACE (Fast ACE)

ECIES (Elliptic Curve Integrated Encryption Scheme)

15

KEM.KeyGen(q,G) KEM.Encrypt(pk) KEM.Decrypt(sk, C)

ECIES

x ∈ [1,q)
Y = [x]G
sk ← x
pk ← Y
Return (pk, sk)

r ∈ [1, q)
C = [r]G
D = [r]Y
K = kdf(C||D)
Return (K, C)

D = [x]C
K = kdf(C||D)
Return K

– In KEM.KeyGen(), perform

– choose a parentK, run TPM2_Create(), return key.blob
(ek, mk) = kdf(parentK); (x)ek||Y||macmk((x)ek||key.name)

– In KEM.Decrypt(), perform

– TPM2_Load(key.blob)

– TPM2_ECDH_ZGen(C), return [x]C

FACE (Fast Advanced Cryptographic Engine)

16

– In KEM.KeyGen(), call

– TPM2_Create() 4 time to get [x1]G, [x2]G, [y1]G, [y2]G

– TPM2_ECDH_KeyGen() twice to get G1 and G2

– TPM2_ECDH_ZGen() 4 times to get [x1]G1, [x2]G2, [y1]G1, [y2]G2

– In KEM.Decrypt(), call TPM2_ECDH_ZGen() 4 time to get

X1 = [x1]U1, X2 = [x2]U2, Y1 = [y1]U1, Y2 = [y2]U2

KEM.KeyGen(q,G1) KEM.Encrypt(pk) KEM.Decrypt(sk, C)

F
A
C
E

a1,a2 ∈[0,q)
G1 = [a1]G
G2 = [a2]G
x1,x2,y1,y2 ∈ [0,q)
C = [x1]G1 + [x2]G2
D = [y1]G1 + [y2]G2
sk ← (x1, x2, y1, y2)
pk ← (C,D)
Return (pk, sk)

r ∈ [0, q)
U1 = [r]G1
U2 = [r]G2
α = hash(U1 || U2)
r′ = α·r mod q
V = [r]C + [r′]D
K || T = kdf(V)
C = U1 || U2 || T
Return (K, C)

Parse C = U1 || U2 || T
α = hash(U1 || U2)
t1 = x1 + y1 · α mod q
t2 = x2 + y2 · α mod q
V = t1·U1 + t2·U2
K || T′ = kdf(V)
Return K, if T = T′
Otherwise, return Fail

Discussion on

17

– Limitations of algorithm agility, for EC digital signatures

– ECDSA, EC-GDSA, EC-KCDSA, EC-RDSA, SM2

– TPM implementation of these algorithms are not much integrated

– Compatibility issue
– EC-Schnorr in ISO/IEC 14888-3, ISO/IEC 11889, BSI TR-03111 and New

TCG proposal are not compatible

– Performance
– difficult to provide meaningful performance measurements for TPM

What does this paper not cover?

Rigorous security analysis

Thank you!

	Algorithm Agility����� ̶ Discussion on TPM 2.0 ECC Functionalities
	Trusted Platform Modules (TPMs)
	Why is algorithm agility necessary?
	Cryptographic algorithms in TPM 1.2
	Necessary Changes to TPM 1.2
	TCG’s Reaction: Algorithm Agility in TPM 2.0
	How to achieve algorithm agility?
	A naïve solution
	The TCG solution
	What does this paper introduce?
	Overview of TPM 2.0 Functionalities�
	Overview of TPM 2.0 Key Structures �
	Known ECC Cryptographic Use Cases for the TPM 2.0
	New ECC Use Cases for the TPM 2.0
	ECIES (Elliptic Curve Integrated Encryption Scheme)
	FACE (Fast Advanced Cryptographic Engine)
	Discussion on
	What does this paper not cover?�
	Thank you!

